Low-Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization Todd J. Toops Email: toopstj@ornl.gov Phone: 865-946-1207 Oak Ridge National Laboratory National Transportation Research Center 2018 U.S. DOE Vehicle Technologies Office Annual Merit Review This presentation does not contain any proprietary, confidential, or otherwise restricted information NTRO ## **Acknowledgements** - ORNL Low Temperature Catalysis Team - Andrew Binder,[†] Shuai Tan,[‡] Jae-Soon Choi, Jim Parks - DOE funding - Advanced Combustion Systems - Ken Howden, Gurpreet Singh, and Michael Weismiller VEHICLE TECHNOLOGIES OFFICE - Access to instrumentation - Micrographs and elemental maps captured using instrumentation (FEI Talos F200X S/TEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities ^{‡ -} Shuai Tan is now an R&D Engineer at UOP-Honeywell in Chicago, IL ^{† -} Andrew Binder is now a Chromatography Chemist at Galbraith Laboratories, Inc. in Knoxville, TN ## **Project Overview** ### **Timeline** Year 3 of 3-year program* ## **Budget** - FY2017: \$400k (Task 1*) - FY2018: \$300k (Task 1*) *Task 1: Low Temperature Emission Control Part of large ORNL project "Enabling Fuel Efficient Engines by Controlling Emissions" (2015 VTO AOP Lab Call) ### **Partners** - Low Temperature Aftertreatment Sub-Team of US DRIVE Advanced Combustion and Emission Control Tech Team - Johnson Matthey - Solvay - NSF-funded scientists/students from University of South Carolina - University at Buffalo (SUNY) ### **Barriers** Addressing emission compliance barrier to market for advanced fuelefficient engine technologies, such as 90% conversion of NOx, CO and HC at 150°C ## **Objectives and Relevance** Develop new emission control technologies to enable fuel-efficient engines with low exhaust temperatures (<150°C) to meet emission regulations Goal: 90% Conversion at 150°C - Greater efficiency lowers exhaust temperature - Catalysis is challenging at low temperatures - Emissions standards getting more stringent 54.5 mpg CAFE by 2025 ^{* &}quot;Conventional": modern state-of-the-art GDI Turbocharged (stoichiometric) ^{* &}quot;Advanced LTC": advanced lean-burn Low Temperature Combustion (LTC) engine ## **Relevance: Guiding Documents Define Needs** 2015 CLEERS Industry Priorities Survey USDRIVE "The 150°C Challenge" Workshop Report USDRIVE ACEC Tech Team Roadmap (2013) Relevant to all combustion approaches cited in ACEC Tech Team Roadmap #### **Identified Needs Addressed:** - Lower temperature CO and HC oxidation - Low temperature NOx reduction - Cold start emission trapping technologies - Especially passive NOx adsorbers - Reduced PGM - Better durability - Promote innovative catalytic solutions via partnering with DOE BES programs Low Temperature Combustion (LTC) Dilute Gasoline Combustion Clean Diesel Combustion (CDC) ## **Approach** - Advanced concepts through collaborations - Universities and BES-funded scientists - Evaluate promising materials w/ ACEC protocols - Enhance conventional catalysts through support modifications - Maximize PGM utilization with improved durability - Core@shell approaches with metal oxides - Targeted deposition of PGM on nanoparticles of Ce- and Ce-Zr supported on alumina - Passive adsorber/trap materials - Hold onto emissions until catalysts are active - Passive NOx adsorbers - Hydrocarbon traps - Novel materials (high risk) - PGM free metal oxides ### **Collaborations** #### DOE Basic Energy Science researchers Sheng Dai and Ashi Savara (ORNL), Center for Nanophase Materials Science (ORNL) #### CLEERS Dissemination of data; presentation at CLEERS workshop #### Academia - University of South Carolina: Professors John Regalbuto, Jochen Lauterbach, Erdem Sasmaz - University at Buffalo (SUNY): Professor Eleni Kyriakidou - University of Tennessee: Professors Siris Laursen and Sheng Dai #### Industry - USCAR/USDRIVE Low Temperature Aftertreatment (LTAT) working group - low temperature evaluation protocols - Catalyst and washcoat suppliers - Johnson Matthey: Industry input from Haiying Chen, washcoating collaboration - Solvay: alumina-based supports provided for PGM support studies at USC (Barry Southward) - Presentations given at Umicore, BASF, Hee-Sung, Hyundai, Ford #### Other DOE-funded FOA Projects - Ford-led project: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines - Catalysts being investigated for stoichiometric applications - UCONN-led project: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation ## **Milestones** - FY17 Milestones: complete - Develop capability to washcoat novel powder catalysts (9/30/2017). - Achieved on cores and full-size monolith - FY18 Milestones on track - Achieve 90% conversion of CO, HC, and NOx with catalytic emission control in a flow reactor ## **Summary of Technical Accomplishments** - ORNL/USC/Solvay Collaboration PGM/advanced supports - Showed that 10-30% SiO₂ content in Al₂O₃ improves reactivity - Andrew Wong received PhD from U-So.Car.* ### Trapping materials - Employed USDRIVE protocol for trapping - Demonstrated trap materials function effectively as oxidation catalysts - Verified aging degrades overall trap functionality, but C₁₀H₂₂ still trapped efficiently #### Multifunctional evaluation Demonstrated mixed bed configurations have markedly better performance vs. dual bed ### Washcoating advances - Full-size washcoated monolith of CCC+Pt/Al₂O₃ - In collaboration with JMI, washcoated Pd/Ce-Zr_{NP}/Al₂O₃ and Pt/Ce-Zr_{NP}/Al₂O₃ samples ## **Employ low temperature protocols to evaluate** novel catalysts - Project uses US DRIVE Advanced Combustion and Emission Control Team Aftertreatment Protocols for Catalyst Characterization and Performance **Evaluation** - Full protocol at: www.CLEERS.org #### LTC-D: Low Temp. **Combustion Diesel** Total HC₁: 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm *C₁₂H₂₆: 2100 ppm CO: 2000 ppm NO: 100 ppm H_2 : 400 ppm H₂O: 6 % CO_2 : 12 % #### Powder Catalyst Requirements - Reactor ID 3-13 mm - Catalyst particle size \leq 0.25 mm (60 mesh) - Catalyst bed L/D ≥ 1 - Space velocity - 200-400 L/g-hr - For 0.1 g, flow 333-666 sccm ^{* -} we employed decane (C₁₀H₂₂) due to bubbler needs O_2 : Balance N₂ # University of South Carolina (USC) and Solvay collaboration yielding promising results for PGM catalysts - University of South Carolina (USC) and Solvay collaboration - Prof. Regalbuto (USC) has been leading research on Strong Electrostatic Adsorption (SEA) of PGM on standard supports - Superb initial PGM dispersion - Solvay collaboration started - A leader in stable supports - Provided 7 supports - 70-100% AI, 0-30% Si, 0-4% La - USC synthesis of Pt:Pd DOCs - Target PGM total: 2 wt% - Pt:Pd 1:0, 3:1, 1:1, 1:3, 0:1 - Research objectives - Does stable commercial support lead to enhanced durability? - Are Pt/Pd bimetallics more stable? | Al ₂ O ₃
(wt%) | SiO ₂
(wt%) | Surf. Area
(m²/g) | | |---|--|----------------------|----------| | 100 | 0 | 160 | | | 95 | 5 | 105 | | | 85 | 11 + 4% La ₂ O ₃ | 171 | | | 88 | 12 | 249 | | | 80 | 20 | 292 | 11111111 | | 70 | 30 | 160 | | | 0 | 100 | 282 | | # Pt-only (\(\phi\)) catalysts continue to show lowest T₉₀ for degreened and aged catalysts regardless of support - Expected improvement from Pd/Pt bimetallic depositions not realized with activity - improved durability seen with T₅₀, but not T₉₀ - Additional benefit of high NO to NO₂ oxidation for particulate oxidation with Pt # Support variation study indicates 10-30% SiO₂, high surface area, and 0% La benefit THC reactivity - Observations noted for Pt-only catalyst samples for THC light-off temperatures - Notable decrease in both T₅₀ and T₉₀ observed for non-La containing supports when increasing from 5% SiO₂ to 10-30% SiO₂ - Although not surprising, distinct trend in surface area is observed - Only exception is the La containing support, which is notably less active ## Studies of HC/NOx Traps use USDRIVE Trapping Protocol Protocol finalized in March 2018 by the Low Temperature Aftertreatment Sub-Team of the US DRIVE Advanced Combustion and Emission Control Team (<u>www.CLEERS.org</u>) - Key features: - Long initial storage treatment - Rapid heating rate of 20°C/min - Aromatic and heavy HCs dominate speciation - Ethanol included in gasolinerelevant conditions ### LTC-D: Low Temp. Combustion Diesel | Total HC ₁ : | 3000 ppm | NO: | 100 ppm | |-------------------------|-----------|----------|------------------| | C_2H_4 : | 900 ppm | H_2 : | 400 ppm | | C_7H_8 : | 900 ppm | H_2O : | 6 % | | $C_{12}H_{26}$: | 1200 ppm* | CO_2 : | 6 % | | CO: | 2000 ppm | O_2 : | 12 % | | | | Balanc | e N ₂ | Also need to be able to survive 800°C for 50 h and be tolerant of sulfur (5 ppm SO₂ for 5h at 300°C) #### Degreen at 700°C for 4h # Pd/ZSM-5 captures high percentage of HCs and NO in first three minutes of protocol; release varies with species - Pd/ZSM-5 stores a considerable amount of NO, toluene (C₇H₈) and decane (C₁₀H₂₂) with a peak release centered around 210 °C - HC release initiates immediately upon heating | Zeolite
type | Si/Al
molar
ratio | Nominal
cation
form | Surface
area
(m²/g) | |-----------------|-------------------------|---------------------------|---------------------------| | ZSM-5 | 15 | 1% Pd ²⁺ | ~400 | Initial calcination: 500 °C (2 h) Degreened at 700 °C (4 h) | | C ₂ H ₄ | C ₇ H ₈ | C ₁₀ H ₁₂ | NO | |--------------------------------------|-------------------------------|-------------------------------|---------------------------------|------| | Total Stored (mg/g _{cat}) | 2.11 | 4.43 | 21.32 | 0.78 | | 3 min storage (mg/g _{cat}) | 0.52 | 0.95 | 2.04 | 0.45 | # A dual-bed approach with a trap in front of the oxidation catalyst has been shown to be a promising approach Combining Pd/ZSM-5 trapping material with most active oxidation catalyst (OC) shows significant improvement under lightly aged conditions - Catalyst system reaches a T₉₀ = 134°C for CO and 177°C for HC - Significant release of hydrocarbons and NO_x occurs at 162°C - Additional aging necessary on each component ## Individual components studied with modified trapping protocol to understand specific role and impact of aging HC composition changed to reflect oxidation protocol | | Release
Temp | Release
% | | |---------------------------------|------------------|--------------|--| | NO_x | 222°C /
454°C | 94% | | | C ₂ H ₄ | 242°C | 9% | | | C ₃ H ₆ | 205°C | 59% | | | C ₁₀ H ₂₂ | 194°C | 48% | | - Pd/ZSM-5 shows favorable release temperatures for pairing with an active DOC catalyst - Nearly 100% release of NO across two peak temperatures - Significant oxidation catalyst-type reactivity observed due to presence of Pd | total HC ₁ : | 3000 ppm | |-------------------------|--------------------------------| | C_2H_4 : | 500 ppm | | C_3H_6 : | 300 ppm | | C_3H_8 : | 100 ppm | | $C_{10}H_{22}$ | :2100 ppm | | CO: | 2000 ppm | | NO: | 100 ppm | | Also H ₂ , O | $_{2}$, $H_{2}O$ and CO_{2} | ## Aged Pd/ZSM-5 only traps decane, C₁₀H₂₂, effectively; however, oxidation functionality diminished Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h | | Release
Temp | Release
% | |---------------------------------|-----------------|--------------| | NO _x | N/A | N/A | | C ₂ H ₄ | N/A | N/A | | C ₃ H ₆ | N/A | N/A | | C ₁₀ H ₂₂ | 230°C | 94% | - Most functionality of Pd/ZSM-5 lost after aging; however, decane is still trapped very effectively - decane release temperature also increases - Minimal C₂H₄, C₃H₆, C₃H₈, NO_x stored/released - Aging nearly eliminates the oxidation catalyst-type reactivity observed (release = storage) Conditions during 30 min storage step at 100°C total HC₁: 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm C₁₀H₂₂:2100 ppm 2000 ppm CO: NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2 # Oxidation catalyst mixture reactivity diminishes after additional hydrothermal aging and sulfation Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h AGED Pd+Pt Oxidation Catalysts: lightoff temperatures increase 15-70°C | T ₉₀ (°C) | 800°C 4h | 800°C 50h +
sulfation | |---------------------------------|----------|--------------------------| | CO | 177 | 191 | | THC | 206 | 279 | | C ₂ H ₄ | 178 | 243 | | C ₃ H ₆ | 206 | 272 | | C ₃ H ₈ | 383 | 508 | | C ₁₀ H ₂₂ | 203 | 267 | - CO light-off only show moderate 14°C increase in T₉₀ - All HCs show lost low temperature activity - C₂H₄, C₃H₆, and C₁₀H₂₂ increase 63-66°C, C₃H₈ increases 125°C - Notably, NO oxidation to NO₂ increases in reactivity on the aged samples above 200°C Conditions during 2°C ramp | | • | • | |-------------------------|----------------------------|-------| | total HC ₁ : | 3000 ppm | | | C_2H_4 : | 500 ppm | | | C_3H_6 : | 300 ppm | | | C_3H_8 : | 100 ppm | | | $C_{10}H_{22}$ | :2100 ppm | | | CO: | 2000 ppm | | | NO: | 100 ppm | | | Also H2, O | $_{0}$, $H_{2}O$ and CO | O_2 | | OAK RIDG | NATIONAL | _ | ### Aging in the full dual-bed configuration significantly lessens deactivation Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h Desulfation under cycling lean-rich conditions for 30 min at 500°C, 30s per condition Conditions during 2°C ramp - After full aging and sulfation protocol CO and THC light-off temperatures only increase ~40 °C: - CO: $T_{90} = 134 \text{ to } 177 \,^{\circ}\text{C}$ - HC: T_{90} = 177 to 218 °C ### Aging in the full dual-bed configuration significantly lessens deactivation Protocol aging: reaction conditions at 800°C for 50h, 5 ppm SO₂ @ 300°C 5 h Desulfation under cycling lean-rich conditions for 30 min at 500°C, 30s per condition - Conditions during 2°C ramp - After full aging and sulfation protocol CO and THC light-off temperatures only increase ~40 °C: - CO: $T_{90} = 134$ to 177 °C - HC: $T_{90} = 177$ to 218 °C - Although Pd/ZSM-5 trap is heavily degraded, it still improves reactivity of system considerably in dual-bed configuration | total HC₁: 3000 ppm | |---| | C_2H_4 : 500 ppm | | C_3H_6 : 300 ppm | | C₃H ₈ : 100 ppm | | C ₁₀ H ₂₂ :2100 ppm | | CO: 2000 ppm | | NO: 100 ppm | | Also H_2 , O_2 , H_2O and CO_2 | | OAK RIDGE NATIONAL | # Fast ramp (40°C/min) employed to evaluate HC/NO trap as an oxidation catalyst - Straightforward evaluation is difficult due to storage properties of Pd/ZSM-5 - Ramping at 40°C/min allows a pseudo cold-start evaluation - Reactant gas stream established in bypass - Introduce to reactor w/ immediate ramp - Significant storage initially observed, followed by release and conversion Ramp rate: 40 °C/min Single HC/NO trap layer 0.2 g 1% Pd/ZSM-5 Total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$: 2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2 # **Employing dual-bed configuration leads to decreased peak NO and HC release quantity and temperature** - Peak HC slip and release temperature decreases notably - decreases from 206 to 194°C - With Pt in oxidation catalysts, NO to NO₂ oxidation rate increases - Indication of HC-SCR apparent between 200 and 250 °C # Ramp rate: 40 °C/min Dual-bed catalyst layers 0.2 g 1% Pd/ZSM-5 + 0.1 g 2%Pd/SiO₂@ZrO₂ + 0.1 g 3.6%Pt/SiO₂@ZrO₂ Total HC_1 : 3000 ppm C_2H_4 : 500 ppm C_3H_6 : 300 ppm C_3H_8 : 100 ppm $C_{10}H_{22}$: 2100 ppm CO: 2000 ppm NO: 100 ppm Also H_2 , O_2 , H_2O and CO_2 Net conversion quantified between t=0 (~80°C) and 250°C ## **Employing mixed-bed configuration drastically decreases** peak NO and HC release quantity - HC slip decreases by 25% - quantified between t=0 (~80°C) and 250°C - Peak release temperature also decreases from 206 to 182-193°C - Interestingly NO to NO₂ oxidation rate decreases compared to dual-bed - Indication of HC-SCR still apparent between 200 and 250°C, but less ## Remaining Challenges ## **Future Directions** ### Support modifications for enhanced PGM activity PGM content should be as small as possible especially for Pt-containing catalysts Pt-Pd interactions have been shown to have significant advantages, but why is this only observed in physical mixtures here? USC/Solvay collaboration shows excellent initial activity but needs improved durability **Trapping Materials** Pd/zeolites show excellent effectiveness, but characterization illustrates improved ionexchanging is necessary ZSM-5 not stable above 750°C, need different zeolite for NO and smaller HCs Continue to optimize ZrO₂ layer for welldispersed and stable PGM Perform extensive bi-metallic materials characterization to better understand PGM state and interactions Complete aging study on existing catalysts; introduce metal oxide overlayer Improve ion-exchange by systematically modifying procedure followed by characterization Identified supplier of CHA; also targeting new post-doc with zeolite synthesis experience Multifunctional catalyst evaluation Need to move to more representative samples with layered washcoats Continue to improve washcoating technique to allow layered approach ## Responses to 2017 Reviewers (5); overall score = 3.46/4.00 #### Approach (3.6/4.0): - excellent approach to learn fundamentals in applied systems - Checking catalysts with actual exhaust is prudent - aging impact needs to be addressed more completely #### Technical Accomplishments (3.5/4.0): - Advances being made on all fronts - Potential improvements possible with integration - Make aging criteria more clear #### Collaborations (3.1/4.0): - Complex but well-managed project with diverse team - Collaboration will be tested when integrating - Lack of industry support makes program less valuable in terms of DOE program objective #### Future plans (3.4/4.0): - excellent approach to learn fundamentals in applied systems - Would like to see further integration - Work more actively with industry - Look at exotherm impact with faster ramp rate #### Relevance (100%): - Project will be very critical to low temperature combustion success - Project relevance improved with engine demonstration and vehicle OEM #### Resources (60% Insufficient): To move into complex layered and multi-component systems with engine testing will not be possible with current budget #### **Responsive Actions** - 1. Advances in washcoating will allow it - Aging studies were primary focus this year - 1. Large focus of this year was in the combined/integrated systems - 2. Implemented this on slides this year - 1. No issues to date; catalysts freely move between USC and ORNL - Knowledge being learned is shared with industry; techniques reported; working with industry - 1. Primary focus going forward is in multifinctional systems - 2. Johnson Matthey collaboration resulted in washcoated samples this year - 3. Implemented faster ramp in portion of the work this year - Engine approach is challenging, but a possibility with washcoating - Although budget decreased this year, request for \$500k budget is included for next year ## **Summary** - Relevance: Develop new emission control technologies to enable fuel-efficient engines with low exhaust temperatures (<150°C) to meet emission regulations - Approach: employ low temperature protocols to evaluate novel catalysts and systems - Collaborations: Wide-ranging collaboration with industry, academia, & national labs maximizes breadth of study, guides research from other funding sources #### Technical Accomplishments: - Showed that 10-30% SiO₂ content in Al₂O₃ improves reactivity - Demonstrated trap materials function effectively as oxidation catalysts and improve overall performance - Verified aging degrades overall trap functionality, but C₁₀H₂₂ is still trapped efficiently on the aged sample - Demonstrated mixed bed configurations markedly outperform dual bed - Washcoated full-size monolith of CCC+Pt/Al₂O₃ - In collaboration with JMI, washcoated Pd/Ce-Zr_{NP}/Al₂O₃ and Pt/Ce-Zr_{NP}/Al₂O₃ cores #### Future Work: - Improve ion-exchange in zeolites by systematically modifying procedure followed by characterization; incorporate CHA/SSZ-13 into matrix - Continue to optimize ZrO₂ layer for improved surface for well-dispersed and stable PGM - Complete aging study on existing catalysts and then explore introduction of optimized metal oxide overlayer ## **Technical Backup Slides** # **USC/Solvay supports** | Support | AI
(%) | Si
(%) | Surf. Area
(m²/g) | PZC
(pH) | |---------------------------|-----------|------------|----------------------|-------------| | 8 | 100 | 0 | 160 | 8 | | 2 | 95 | 5 | 105 | 7.2 | | 3 | 85 | 11 + 4% La | 171 | 7.2 | | 5 | 88 | 12 | 249 | 7.2 | | 6 | 80 | 20 | 292 | 6.0 | | 1 | 70 | 30 | 160 | 6.1 | | A-300 (SiO ₂) | 0 | 100 | 282 | 3.4 | Experiment Detail: Synthesis of SiO₂@ZrO₂ core@shell Oxide Support Brij 30* Zirconium Butoxide SiO Ethanol Synthesis of silica spheres SiO2 | Material | Surface Area
(m²/g) | 7.0 | s for 3 day | |------------------------------------|------------------------|-----------------|---------------| | ZrO ₂ | 97 | ZrO_2 SiO_2 | Aging for at | | ZrO ₂ -SiO ₂ | 153 | 0 | K Cale | | SiO ₂ @ZrO ₂ | 210 | \rightarrow 0 | | Silica core and zirconium oxide shell after calcination at 700 °C - SiO₂ is located in the core (Si: 14 amu) and ZrO₂ in the shell (Zr: 40 amu). - The ZrO₂ shell seems to be **porous**. - Growth of SiO₂@ZrO₂ spheres. Shell is maintained. Diameter at: **700** °C: ~220 nm 900 °C: ~250 nm ## Targeted PGM deposition on nanoparticles of CeO2 and CeO₂-ZrO₂ to improve durability and activity - Starting with Ce or CeZr nanoparticles, ~5 nm, and anchor them to high surface area supports - In this instance Al₂O₃, but SiO₂ also possible - Target Pd or Pt deposition on preferred supported metal oxide - nano-particles of PGM on nano-particles of Ce-Zr - controlling pH enables targeted deposition ## Synthesis of zeolite based HC and NO traps #### Strategy - Understand ZSM-5 and BEA zeolites in HC and NO adsorption and desorption to help optimization. - Systematic variation of key zeolite properties: - Cation type (H⁺ vs. Ag^{+,} Pd²⁺) - H₂O, CO₂ - Pore structure (BEA vs. ZSM-5) | Zeolite
type | Si/Al
molar
ratio | Nominal cation form | Surface
area
(m²/g) | |-----------------|-------------------------|----------------------|---------------------------| | BEA | 25 | H ⁺ | 680 | | BEA | 25 | Ag+/Pd ²⁺ | NM | | ZSM-5 | 30 | H ⁺ | 405 | | ZSM-5 | 30 | Ag+/Pd ²⁺ | NM | #### Ion-Exchanged Zeolites. 0, 1, 5 wt.% Ag/BEA 1 wt.% Ag/ZSM-5 1 wt.% Pd/BEA 1 wt.% Pd/ZSM-5 Calcination: 500 °C (2 h)